Microbial decontamination of parathion and p-nitrophenol in aqueous media.

نویسندگان

  • D M Munnecke
  • D P Hsieh
چکیده

A mixed microbial culture was adapted to growth on parathion to determine the feasibility of using microorganisms to detoxify concentrated parathion in agricultural wastes. In a 600-ml chemostat, the culture was able to degrade 50 mg of parathion per liter per h. Para-nitrophenol, produced by enzymatic hydrolysis of parathion, caused delays in exponential growth which were directly proportional to its concentration. A pseudomonad, isolated from the mixed culture, exhibited optimal growth at 0.21 mM p-nitrophenol and grew in concentrations up to 3.5 mM. In metabolic studies using [(14)C]p-nitrophenol, the nitro group was removed in stoichiometric quantities as nitrite and hydroquinone was tentatively identified as a metabolite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methyl parathion in residential properties: relocation and decontamination methodology.

In November 1994 methyl parathion (MP), a restricted agricultural pesticide, was discovered to have been illegally sprayed within hundreds of residences in Lorain County, Ohio. Surface levels and air concentrations of MP revealed detectable levels of the pesticide 3 years after spraying. Because of the high toxicity of MP (lethal dose to 50% of rats tested [LD50] = 15 mg/kg) and long half-life ...

متن کامل

Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent.

An optical microbial biosensor was described for the detection of methyl parathion pesticide. Whole cells of Flavobacterium sp. were immobilized by trapping in glass fiber filter and were used as biocomponent along with optic fiber system. Flavobacterium sp. has the organophosphorus hydrolase enzyme, which hydrolyzes the methyl parathion into detectable product p-nitrophenol. The immobilized mi...

متن کامل

Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents.

We report herein a whole cell-based amperometric biosensor for highly selective, highly sensitive, direct, single-step, rapid, and cost-effective determination of organophosphate pesticides with a p-nitrophenyl substituent. The biosensor was comprised of a p-nitrophenol degrader, Pseudomonas putida JS444, genetically engineered to express organophosphorus hydrolase (OPH) on the cell surface imm...

متن کامل

Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase.

An amperometric microbial biosensor for the direct measurement of organophosphate nerve agents is described. The sensor is based on a carbon paste electrode containing genetically engineered cells expressing organophosphorus hydrolase (OPH) on the cell surface. OPH catalyzes the hydrolysis of organophosphorus pesticides with p-nitrophenyl substituent such as paraoxon, parathion and methyl parat...

متن کامل

Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified Clark oxygen electrode.

A microbial biosensor for rapid, sensitive, selective, and cost-effective determination of the total content of organophosphorus nerve agents with p-nitrophenyl substituent is reported. The biosensor consisted of genetically engineered PNP-degrader Pseudomonas putida JS444 expressing organophosphorus hydrolase (OPH) on its cell surface immobilized on a dissolved oxygen electrode. Surface-expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied microbiology

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 1974